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Received 10 July 1998, in final form 11 November 1998

Abstract. We derive the Thouless–Anderson–Palmer (TAP) equations for the fermionic Ising
spin glass. It is found that, just as in the classical Sherrington–Kirkpatrick spin-glass model,
the conditions for stability and for validity of the free energy are equivalent. We determine
the breakdown of the paramagnetic phase. Numerical solutions of the fermionic TAP equations
at T = 0 allowed us to localize a first-order transition between the spin-glass phase and the
paramagnetic phase atµ ≈ 0.8. We computed at zero temperature the filling factorν(µ) and the
distribution of the internal fields. The saddle-point equations resulting from the calculation of the
number of solutions to the TAP equations were found to be much more complicated, as in the
classical case.

1. Introduction

Fermionic Ising spin-glass models can be viewed as generalizations of the standard spin-space
models, the Sherrington–Kirkpatrick model being the best known and analysed representative
of the latter class. Spins of the fermionic spin-glass models are defined on Fock space, whence
the fermionic spin glasses are naturally described by the grand canonical ensemble. The
chemical potential controls the fermion filling and hence the effective spin density. Away
from half-filling, these models must therefore be considered as partners of diluted classical
spin models. A classical spin-1 model also offers a non-magnetic state, but it is defined in
a three-state-per-site space, which differs from the four-state fermionic space. Moreover, the
fermionic Sherrington–Kirkpatrick model has in addition a second life, which is its quantum
dynamical one, to be found in all of the fermionic Green’s functions for example.

An extension to complex chemical potentials allows us to realize that the fermionic models,
which may appear more special at first sight, are indeed the more general models. All spin-
space models are embedded.

Quantum dynamical effects are absent in spin correlations, but the fermionic Green’s
function showed interesting quantum dynamical effects, which moreover turn out to be
strongly dependent on Parisi replica-symmetry breaking. In addition to other instabilities
of the replicated theory, there was a clear indication of a first-order phase transition into the
magnetically disordered phase at high enough chemical potential, i.e. low enough spin density.
The thermodynamic transition line is not easy to find at any order of replica-symmetry breaking.
TheT = 0 endpoint of this transition line does not present a standard quantum phase transition
point of the magnetic phase diagram, since the spin correlations remain static. Nevertheless, the
low-temperature behaviour is hard to access numerically and, despite the discontinuity in the
transition, infinitely many steps of replica-symmetry breaking are the minimum requirement
for solving the infinite-range model completely. Recent analysis shows an additional random-
field-like instability, which may require vector replica-symmetry breaking too.
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This renders the problem very hard within the replica method, and help from other
techniques is searched for. We therefore considered the extension of the famous local mean-
field equations for the random Ising model derived by Thouless, Anderson and Palmer [18].
We generalize these TAP equations to the four-state fermionic spin glass, including a chemical
potentialµ:

H = −1

2

∑
ij

Jij σiσj − µ
∑
i

ni −
∑
i

hexti σi . (1)

ni is the number operator for sitei. The operatorsσi may be expressed in terms of creation
and annihilation operators asσi = a+

i,↑ai,↑ − a+
i,↓ai,↓. The matrixJij represents Gaussian-

distributed random interactions with varianceJ 2/N .
It is believed [2,15] that the complete set of solutions to the TAP equations is equivalent

to the fully replica-symmetry-broken solution in the quantum-field theory [6–9], so far only
known for half-filling. We were able to solve the fermionic TAP equations numerically on the
T = 0 axis and to determine the first-order transition atµc ≈ 0.8 where the paramagnetic and
spin-glass free energies become equal. The dependence of the filling factor on the chemical
potential and the distribution of the internal fields are given below.

In the replicated theory, the fermion filling factor turned out to be something of an obstacle,
since an instability was encountered at low enough temperatures and away from half-filling.
The unresolved problem of discontinuous behaviour of the fermion filling factorν(µ) at any
finite step of replica-symmetry breaking also called for an analysis in a replica-free technique,
which is provided in this paper by means of the fermionic TAP equations.

The application of the numerical methods used here could also be extended to finite-
dimensional systems, addressing for instance the currently interesting issue of short-range
fluctuations in tricritical behaviour.

2. Fermionic TAP equations

The free energy corresponding to the classical TAP equations is

F = −
∑
i

hexti mi − 1

2

∑
ij

Jijmimj − β
4

∑
ij

J 2
ij (1−m2

i )(1−m2
j )

+
1

β

∑
i

{
(1 +mi) ln

(
1 +mi

2

)
+ (1−mi) ln

(
1−mi

2

)}
. (2)

In order to calculate the corresponding expression for the generalized fermionic model,
we extended the linked-cluster diagrammatic theory given by Horwitz and Callen [3]. For
the sake of simplicity, this rigorous and lengthy derivation is replaced by shorter and more
intuitive arguments.

The terms involving logarithms in equation (2) correspond to the entropy of an ensemble
of spins in the classical Sherrington–Kirkpatrick spin-glass model with relative occupations
ni↑ andni↓, usingmi = ni↑ − ni↓. Now we replace these terms with the entropy of the
ensemble in the extended fermionic four-state model. The relative occupations are denoted by
ni↑, ni↓, ni0 andni↑↓, settingmi = ni↑ − ni↓, ni = ni↑ +ni↓ + 2ni↑↓ andq̃i = ni↑ +ni↓. Then
we account for the non-trivial occupation number of the magnetic states by replacing 1−m2

i

in the Onsager reaction field bỹqi −m2
i . After a final Legendre transformation, the fermionic
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free energy reads, usingT = tanh(βµ),

F = −1

2

∑
ij

Jijmimj − β
4

∑
ij

Jij (q̃i −m2
i )(q̃j −m2

j )−
∑
i

µ(1 + (1− q̃i )T) +
N

β
ln 2

e +
1

β

∑
i

[(
q̃i +mi

2

)
ln

(
q̃i +mi

2

)
+

(
q̃i −mi

2

)
ln

(
q̃i −mi

2

)
+

(
(1− q̃i )(1− T)

2

)
ln

(
(1− q̃i )(1− T)

2

)
+

(
(1− q̃i )(1 +T)

2

)
ln

(
(1− q̃i )(1 +T)

2

)]
. (3)

The system is characterized by the following 2N coupled TAP equations:

mi = sinh(βHi)

cosh(βHi) + cosh(βµ) exp(−βXi)
q̃i = cosh(βHi)

cosh(βHi) + cosh(βµ) exp(−βXi)
(4)

where

Hi = hexti +
∑
j

Jijmj − βmi
∑
j

J 2
ij (q̃j −m2

j )

and

Xi = β

2

∑
j

J 2
ij (q̃j −m2

j ).

A third equation for the local filling factorsνi = 1+(1− q̃i ) tanh(βµ) follows fromν = −∂µG.
In the replicated quantum-field theory, the corresponding equationν = 1 + (1− q̃) tanh(βµ)
turns out to be invariant under an arbitrary number of replica-symmetry-breaking steps.

3. Convergence and stability

Inspired by Plefka’s work on the classical system [12] and adopting his replacementJij → αJij ,
we can rederive the fermionic free energy by means of a Taylor expansion as follows:

G(α) = −α
2

∑
ij

Jijmimj − α2β

4

∑
ij

J 2
ij (q̃i −m2

i )(q̃j −m2
j )

+
1

β

∑
i

[(
q̃i +mi

2

)
ln

(
q̃i +mi

2

)
+

(
q̃i −mi

2

)
ln

(
q̃i −mi

2

)
+

(
(1− q̃i )(1 +T)

2

)
ln

(
(1− q̃i )(1 +T)

2

)
+

(
(1− q̃i )(1− T)

2

)
ln

(
(1− q̃i )(1− T)

2

)]
− µ

∑
i

(1 + (1− q̃i )T)−
∑
i

hexti mi +
N

β
ln 2 + O(α3). (5)

The correct free energy is given byG(α = 1). The diagrammatic expansion has already
shown that, provided the series actually converges, the terms of cubic or higher order are
suppressed in the thermodynamic limit. We may now determine the radius of convergence
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of G(α), which, by a standard theorem of complex analysis, is equivalent to the radius of
convergence of

∂αG(α) = −1

2

〈∑
ij

Jij σiσj

〉
α

= −1

2

∑
ij

Jijmimj − 1

2β

∑
ij

Jijχij (α).

There, the susceptibility matrixχ is defined as

χij (α) = β(〈σiσj 〉α −mimj ) = ∂hi ∂hjF(h, χ).
The radius of convergence is given by min(|α|), where the minimization is done over the

values ofα with eigenvalues 0 in the inverse susceptibility matrixχ−1. In the classical case the
equation(χ−1)ij = ([∂h∂hF(h)]−1)ij = ∂mi ∂mjG(m) signifies that, when taking into account
the special properties of the spectra of these random matrices [5], the local stability of a TAP
solution implies the validity of the free energy at this point. In the fermionic model we have
to deal with two different matrices, to describe either the convergence of the linked-cluster
expansion(χ−1)ij or the local stability of a given TAP solution by(

∂mi ∂mjG ∂mi ∂q̃jG
∂q̃i ∂mjG ∂q̃i ∂q̃jG

)
=
(
∂hi ∂hjF ∂hi ∂χjF
∂χi ∂hjF ∂χi ∂χjF

)−1

.

A theorem given by Pastur [10,11] used heavily by Plefka [12] and resolvent calculus can
be applied to both cases to determine the limits of the support of the spectra.

It is very interesting to note that at the end of quite lengthy calculations the two matrices
lead to exactly the same set of conditions, generalizing Plefka’s convergence and stability
conditions as follows:

〈(q̃ −m2)2〉 6 T 2 (6)
1

2
〈q̃(1− q̃)〉 + 2〈m2 −m4〉 6 T 2. (7)

The known classical limit is obtained by settingq̃i = 1. We have thus linked the local
stability of TAP solutions to the finite support of the spectrum of random matrices in the
thermodynamic limit. This gives a hint as to why the numerical search for these solutions
is so difficult [4, 16, 17]: for finiteN the support of these spectra becomes unbounded; see
e.g. [5] for the exponential corrections to the semi-circle law at finiteN . This means that for
every solution the probability of havingnegativeeigenvalues in the stability matrix is finite.
But even just one negative eigenvalue prevents one from finding this solution via minimization
algorithms.

4. Breakdown of the homogeneous paramagnetic solution

The TAP equations are readily solved numerically in the homogeneous paramagnetic phase,
where they reduce to one single equation forq̃ = q̃i given for alli by

q̃ = 1

1 + cosh(βµ) exp(−[(βJ )2/2]q̃)
. (8)

This is exactly the equation found in [6, 9, 14] forq̃ with a replicated quantum-field-theory
approach.

The second-order transitions between the paramagnetic and the spin-glass phase are given
by the intersection of the paramagnetic solutions with the stability conditions (equations (6)
and (7)). In the next section we find a first-order transition on theT = 0 axis atµc ≈ 0.8. We
expect a line of first-order transitions linking this point with the tricritical point. The broken
line in the phase diagram (figure 1) gives only a schematic behaviour of this line, as the exact
path is currently unknown.
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Figure 1. The phase diagram obtained from the fermionic TAP equations. The broken line is a
linear approximation to the first-order transition line connecting the (calculated) tricritical point
and theT = 0 critical point. The slope dT /dµ of the second-order transition line at the tricritical
point is finite.

5. TAP equations atT = 0

At T = 0 the TAP equations reduce to

mi = �(hi) q̃i = m2
i

where

hi =
∑
i

Jijmi

and�(x) = 2(x−µ)−2(µ−x) denotes a modified sign function. The energy corresponding
to these solutions is simply

fSG = − 1

N

∑
(ij)

Jijmimj − µ

N

∑
i

ni

which has to be compared with the free energy of the paramagnetic solutionfPM = −2µ
to find the first-order transition. We were able to calculate numerically a huge number of
spin-glass solutions. We first note the interesting dependence of the filling factorν on the
chemical potential (see figure 2). Unlike the discontinuous replica-symmetric and finite-step
replica-symmetry-breaking solutions [7,8], the filling factor varies continuously withµ in the
vicinity of µ = 0. The numerical data for the increase ofν(µ) nearµ = 0 are compatible
with power-law fits,|δν| ∝ |µ|x , x > 1, including exponential behaviour.

From the dependence of the energy difference between the spin-glass solutions and the
paramagnetic solution (figure 3), we can deduce a first-order transition atµ = µc ≈ 0.8.
This critical value ofµ can be viewed as aT = 0 analogue ofTc for the thermal first-order
transitions.

Another very interesting feature shows up in the behaviour of the distribution of the local
fieldshi . When applying a chemical potential, this probability density function is substantially
modified. The ‘soft gap’ (see [13]) athi = 0 splits up into two soft gaps athi = −µ and
hi = µ. Within the interval [−µ,µ] another peak emerges (see figures 4 and 5).
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Figure 2. The filling factorν(µ) as a function of the chemical potential for systems of different
sizes.
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Figure 3. The energy gap between spin-glass solutions of the zero-temperature TAP equations
and the corresponding paramagnetic solutions. We plot a large number of numerical solutions for
systems of sizeN = 75 andN = 150 in order to show the effect of finiteN on the fluctuation of
the energy gap.

6. The number of solutions

The number of solutions of the TAP equations (related to the so-called complexity) can
be calculated by adopting the procedure of Bray and Moore [1] for finiteT or following
Roberts [13] forT = 0. We were able to obtain in both cases fermionic generalizations of
the saddle-point equations, which become extremely complicated due to the additional non-
magnetic degrees of freedom. For example, in the finite-temperature case the number of TAP
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Figure 4. The internal field distributionP(|hi |) for N = 150 and different values ofµ. The
distributionP(hi) is symmetric. We used about 10 000 points for each histogram.

N = 150
N = 100
N = 50

� = 0:6

hi

P
(j
h
i
j)

4.543.532.521.510.50

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5. The scaling ofP(hi) atN = 50,N = 100 andN = 150 forµ = 0.6.

solutions is

N (f ) = exp

(
N

[
− 1

2J 2
(12 − B2)− (1 +B)(q̃ − q)− ηq − uf − %q̃ + ln I

])
(9)

whereI is given below and the parametersq, q̃,η,%,1andB are solutions to the corresponding
saddle-point equations:

f = 〈F〉I q = 〈m2〉I q̃ = 〈κ〉I
0= B

{
1− J 2〈 (κ − (κλ)2)2

1 +B(κ − (κλ)2) 〉I
}

0= 1

q
〈κλ(tanh−1(λ)− κλ1)〉I −1− J 2(q̃ − q)

% = −(1 +B)− J
2

2

〈
2
√

1− λ2κ24
〉

η = 1 +B +
1

2q

[
1− 1

J 2q
〈(tanh−1(λ)− κλ1)2〉

]
+
J 2

2

〈
2
√

1− λ2κ24
〉

(10)

which can be viewed as an extension of the original equations given by Bray and Moore, but
the average〈·〉I means averaging by use of the following kernel:

I =
∫ 1

0
dκ
∫ 1

−1
dλ g(Ex, κ, λ)δ(f (Ex, κ, λ))
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=
∫ 1

0
dκ
∫ 1

−1
dλ

κ√
2π
√
qJ

[
1 +B(κ − (κλ)2)
(κ2 − (κλ)2)

]
(1− κ)u−1

× exp

(
η(κλ)2 + %κ +

uκλ

2
tanh−1(λ)− 1

2J 2q
(tanh−1(λ)− κλ1)2

)
× δ

(
ln

(
(κ2 − (κλ)2) cosh2(µ)

(1− κ)2
)
− J 2(q̃ − q)

)
.

This kernel also gives the number of solutions.λ = m/κ is the reduced magnetization.4 is
an abbreviation for

4 = −u− 2

1− κ + 2ηκλ2 + ρ +
uκλ

2
tanh−1(λ)

+
B(1− 2κλ2)

1 +B(κ − (κλ)2) +
λ1

J 2q
(tanh−1(λ)− hext − κλ1).

These equations remain currently unsolved even numerically. The equations forT = 0
are equally hard to treat.

7. Forward look

The numerical work presented here should now be accompanied by exact analytic replica-
symmetry-breaking calculations for arbitraryµ. In order to reproduce the behaviour ofν(µ)
and ofP(hi, µ), the generalizations of Roberts’ saddle-point equations [13] should be solved.
It would be desirable to have Parisi’s solution (infinite-step replica-symmetry breaking) for
µ 6= 0. The answer to one of the open questions might reveal the exact path of the first-order
transition line forT 6= 0. If this turns out to be impossible, one should find more refined
numerical algorithms, which allow one to solve the fermionic TAP equations forT 6= 0.
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